
Chess Review
May 8, 2003
Berkeley, CA

Middleware Design in
Networked Embedded
Systems

Miklos Maroti and Akos Ledeczi

Institute for Software Integrated System
Vanderbilt University

Chess Review, May 8, 2003 2

Overview

• Sample application: shooter localization
• Required middleware services
• Problems encountered
• Model-integrated computing for I/O

Automata and TinyOS
• Formal verification
• Lessons learned

Chess Review, May 8, 2003 3

Application: Shooter
localization

• Locate shooters in a large area using
– a few hundred motes (Berkeley MICA motes)

• 4 MHz microcontroller
• 4 KB of RAM, 128 KB or ROM
• Wireless communication, 4 KB/sec
• Densely deployed at unknown locations
• (cheap) microphone and buzzer
• Runs on two AA batteries

– and a base station (laptop or iPAQ)

• Application challenges:
– Multiple shots, very noisy environment
– Echoes from buildings, no line of sight
– Supersonic weapons: shockwave and muzzle blast
– Unknown bullet speeds
– Isolation and grouping of “interesting” events

Chess Review, May 8, 2003 4

Algorithm: Detection

• 1-mic sensor board:
– Measure time of arrival
– Sample the microphone around 20 KHz and record

data
– If something loud happens then analyze data
– Distinguish the shockwave and muzzle blast
– Identify the weapon type/caliber using zero crossings
– Determine the “leading” edge of the signal
– Report the event to the base station

• 3-mic sensor board:
– Measure direction of arrival
– 3 microphone array (5 cm apart)
– 1 MHz sampling
– Processing by on board FPGA
– Shockwave timestamp and pair wise TDOA

Chess Review, May 8, 2003 5

Algorithm: Localization

• The base station collects and analyzes events
using
– Time difference of arrival (TDOA)
– Error surface (deviation of shot times from a given

point)
– Back-tracking and selecting time where events

coincide

Triangulation error caused by 1 ms time synch error

m

m

Chess Review, May 8, 2003 6

Necessary Middleware
Services

• Application modeling language: Gratis II
– graphical development environment for

TinyOS

• Middleware services:
– Multi-hop time synchronization with 1 ms of

accuracy
– Mote localization with 1 m of accuracy
– Reliable message routing to the base

station

• Local services:
– Mote orientation using magnetometer
– Microphone sampling at 20 KHz

Chess Review, May 8, 2003 7

TinyOS and Gratis II

• Everything is a
component

• Components has
provided and used
interfaces, fixed memory
frame

• Interfaces are
bidirectional (commands
and events)

• Application is a collection
of statically wired
interacting components

• Two level scheduling
(non-preemptive): events
and tasks

• Gratis II: automatic
configuration generation
and parsing

• TinyOS: Huge library of existing
components and applications

Chess Review, May 8, 2003 8

Problems encountered

• Time synchronization:
– We used the time of sendDone and receive

events to establish synchronization points
• Works fine in simple test application
• Breaks when other interactive components are

present (arbitrary delay)
• Require OS support: timestamp in radio stack

– When calculating linear regression we run
into representation problems (float is not
enough)

• Knowing the possible range of values and the
expected clock skew we can design better
algorithm

– How to implement and verify robustness
– How to formally verify the accuracy

Chess Review, May 8, 2003 9

Problems encountered (2)

• Localization with acoustic ranging, idea:
– “beacon” sends out a radio signal followed by an audio

signal
– “ranger” measures the time difference of arrival, calculate

distance
• Modification needed because of noise:

– “beacon” emits several audio signals
– “ranger” records them and take the average

• Requirements:
– Time synchronization (a single radio message can be used)
– The “beacon” must buzz and the “ranger” must start

recording at the same physical time
– Fixed physical sampling rate for proper alignment
– We must know the sampling frequency for digital filtering

• Testing:
– Worked fine in simple test application
– Broke when other components were present: samples

sometimes arrived in the wrong order, and other timing
problems

Chess Review, May 8, 2003 10

Problems encountered (3)

• Different platforms: MICA and MICA2
– Have different core frequencies

• different microphone sampling frequency
• different buffer sizes and other constants
• filters need to be redesigned, etc.

– MICA2 has slightly better ADC
– Different radio stack: the MICA2 uses the ADC to

measure RSSI for collision avoidance.
• We cannot sample the microphone and use the wireless

communication at the same time

• Solution: turn alternatively on/off the radio
stack and the microphone
– Need to modify and verify the existing middleware

services
– New middleware service to coordinate the on/off

phases on different motes

Chess Review, May 8, 2003 11

The ADC driver interface

• The TinyOS interface is functional
• Need behavioral interface, especially dataReadyRet

– samples arrived in wrong order
– buffer samples at ADC provider

• Need fixed sampling rate
– time difference between two

consecutive samples is in [r-ε,r+ε]
– time difference between any two

samples is in [nr-ε,nr+ε]

• When does the sampling start in
real time?
– Fixed delay from start
– Delay is between bounds

• What is the timestamp of the
sample

• Who else is using the ADC

A
D

C
 user

A
D

C
 provider

setRate

start

dataReady

dataReadyRet

stop

isBusy

timing

Chess Review, May 8, 2003 12

Component and composition
verification

• Use I/O Automata
– Existing tool chain developed at MIT (Nancy Lynch)

• IOA language: nondeterministic, declarative
• Safety and liveness properties
• Forwards and backwards simulations
• Invariants, and other assertions (first order language)
• Composer, theorem prover (Larch), and simulator
• Network size and topology is not limited

– Exploit existing and verified distributed algorithms

• Model each interface using IOA
– Two models: user and provider
– Compose these two models
– Specify and verify assertions

Chess Review, May 8, 2003 13

Module verification

• Model each module using IOA
– Has used and provided interfaces
– The interfaces have implemented and expected interface

model
– State properties that this implementation relies on

• Verify that the module implements its used and provided
interface models using bi-simulation
– For each implemented interface model (red dot), compose

the module with all other expected interface models (blue
dot).

– Verify the bi-simulation from this composition to the
implemented interface model

module
used interface

provided interface

implemented model

expected model

Chess Review, May 8, 2003 14

Code generation

• Executable code for simple modules can be generated from
models

• Test code can be generated for interface models

Chess Review, May 8, 2003 15

Configuration verification

• No new IOA models, just composition
• State and verify new invariants and

properties
• Verify interface implementation

configuration

component component

componentcomponent

Chess Review, May 8, 2003 16

Different levels of
abstraction

• Each horizontal box is full hierarchy of
interfaces, modules and configurations.

• Not every level has executable code

Hardware Presentation Layer

Platform Services

Middleware Components

Distributed Algorithms

Application

Distributed Algorithm Verification

HPL

PS

MW

DA

HPL

PS

MW

DA

HPL

PS

MW

DA

Application Logic Verification

APP APP APP

node 1 node 2 node n

Chess Review, May 8, 2003 17

Lessons Learned

• Modeling abstractions: resource
constraints couple everything, deep
modeling is needed

• Platform characteristics impact
abstractions for application modeling

• Supporting more than one platform will
help in getting the right abstractions

• Parameters and their interdependencies
must become first class objects in
models

• We are far from auto generating of code
• Experiment, experiment, experiment

	Middleware Design in Networked Embedded Systems
	Overview
	Application: Shooter localization
	Algorithm: Detection
	Algorithm: Localization
	Necessary Middleware Services
	TinyOS and Gratis II
	Problems encountered
	Problems encountered (2)
	Problems encountered (3)
	The ADC driver interface
	Component and composition verification
	Module verification
	Code generation
	Configuration verification
	Different levels of abstraction
	Lessons Learned

